商务服务
alpha-beta剪枝算法实现中国象棋人机对战
2023-06-29 19:45

Github仓库:https://github.com/dick20/Artificial-Intelligence

??本实验要求编写一个中国象棋博弈程序,使用alpha-beta剪枝算法,实现人机对弈。因为是人机博弈,因此我们需要使得电脑比较聪明,而方法就是要电脑选择走比较好的步骤。机器是基于搜索来下棋的,我们需要让机器考虑比较长远的情况,然后做出比较好的选择,而为了提高搜索效率,就应用到了alpha-beta剪枝算法。

??对于博弈问题,我们首先考虑的是极小极大搜索算法。我们规定:MAX代表程序方,MIN代表对手方,P代表一个棋局(即一个状态)。有利于MAX的势态,取正值;有利于MIN的势态,取负值;势态均衡,取零。的大小由棋局势态的优劣来决定。评估棋局的静态函数要考虑两个方面的因素

  • 双方都知道自己走到了什么程度
  • 双方都知道下一步能够做什么

??基于这个前提,博弈双方要考虑的问题是:如何产生一个最好的走步,能尽快获胜。因此,就引出来极小极大搜索算法

??极小极大搜索的基本思想是

  1. 当轮到MIN走步的节点时,MAX应考虑最坏的情况(因此,取极小值)。
  2. 当轮到MAX走步的节点时,MAX应考虑最好额情况(因此,取极大值)。
  3. 当评价往回倒退时,相应于两位棋手的对抗策略,不同层上交替地使用1、2两种方法向上传递倒推值。

??MIN、MAX过程将生成后继节点与估计格局两个过程分开考虑,即需要先生成全部搜索树,然后再进行每个节点的静态估计和倒推值计算。实际上,这种方法效率极低。而alpha-beta基于这个过程,给了我们一个高效的算法。在极大层中定义下界值,它表明该MAX节点向上的倒推值不会小于;在极小层中定义上界值,它表明该MIN节点向上的倒推值不会大于。

??剪枝规则如下

  1. 剪枝。若任一极小层节点的值不大于它任一前驱极大层节点的值,即(前驱层(后继层,则可以中止该极小层中这个MIN节点以下的搜索过程。这个MIN节点最终的倒推值就确定为这个值。
  2. 剪枝。若任一极大层节点的值不小于它任一前驱极小层节点的值,即(后继层(前驱层,则可以中止该极大层中这个MAX节点以下的搜索过程。这个MAX节点最终的倒推值就确定为这个值。

??本次项目的UI是参考了网上的代码,使用Java实现。重点分析alpha-beta剪枝算法,关于UI部分就不详细分析了。

??首先我们来看棋局的评估,能否对棋局有一个好的评估是这个算法很关键的一环。我们需要对棋局做出合适的评估,以确定最好的走步。评估的方面有三个,一个是下一步的棋力,第二个是下一步能做什么,第三个是棋子的价值。先看棋力,棋力的评估主要是根据棋子所在的位置来分析。这里我们写好了每个棋子在不同位置的棋力,这是参考了一些论文得出来的。第二个是下一步能做什么,我们可以根据下一步能做什么来判断这个走步的好坏。在象棋游戏中,一个好的走步我们期望是能够吃掉对方的棋,而且吃掉的棋子价值越大,这个走步越好。当然,如果下一步能够将军,那么这个走步很有可能就是我们想要的。于是我们对下一步能做什么做一个估值:如果下一步能将军,那么它的估值将大大增加+9999;如果下一步能吃掉对方的棋子,那么它的估值将会有一定的增加(车+500,马或炮+100;如果下一步只能吃掉对方的卒,那么它的估值就会下降(-20,因为多数情况下吃掉对方的卒都没什么好处。最后是棋子的价值,这是比较固定的因素,因为我们普遍认为某些棋子的价值是比其他棋子大的(比如车的价值一般来说都比卒要大)。

??每次估值都需要分开两方的棋子来进行估值。即算出程序方棋局的总体价值和对手方棋局的整体价值。用程序方估值-对手方估值作为这个状态下的估值。如果这个估值大于0,说明程序方占优势;反之,说明对手方占优势。

??完成好估值后,就可以开始alpha-beta的剪枝算法了。首先确定博弈树的深度,通俗来说就是要让程序往后推演几步。当然推演的步数越多,越能找到一个好的走步,但是所需的时间也就越多。然后我们需要使用一个标记来表示当前是极大层还是在极小层,根据标记来计算当前节点的或。如果在极大层,我们需要获得它下面所有极小层的倒推值的极大值(实际上不是所有;如果在极小层,就需要获得它下面所有极大层的倒推层的极小值(实际上不是所有)。这里就牵涉到了剪枝。以在极大层为例,如果当前MAX节点提供的倒推值大于其前驱极小层MIN节点的,那么说明这个MAX节点以下搜索提供的值不可能小于,也就没有继续搜索的意义了,所以就可以直接结束这个MAX节点的搜索,这就是剪枝。

  1. 棋子本身的价值评估

     
  • 将军:80
  • :0
  • :0
  • :300
  • :500
  • :300
  • :100
  1. 棋子位置的价值评估
  • 将军

     
  •  
  •  
  •  
  •  
  •  
  •  
  1. 对下一步吃子进行估值

     
  • 下一步能将军,估值+9999(相当于直接选择这个值了
  • 下一步能吃【车】,估值+500
  • 下一步能吃【马】或【炮】,估值+100
  • 下一步能吃【卒】,估值-20
  1. 对每个状态的估值

     

    对每个状态的估值包含了上面三种估值,然后用程序方估值-对手方估值得出最终结果。

  2. alpha-beta剪枝算法。

     

    整个剪枝算法是自顶向下的,所以要判断层数,当时,说明已经到叶子节点,直接返回当前节点的估值。使用一个布尔变量标记当前是极大层还是极小层,在当前节点下生成所有可能的后继节点,对每个节点进行极小极大搜索。每个子节点倒推或,然后根据去求极大或极小。每完成一个节点,就试图去做剪枝。极大层返回,极小层返回。

  3. 然后封装一个函数给外部调用。这个函数向外部返回的是估值最好的一个走步。

     

    对于每一个棋局,将所有的走步都变成一个节点,然后对每一个走步使用alpha-beta剪枝算法进行极小极大搜索。注意,如果下一步有将军的走步,直接作为最优节点返回。

初始界面

初始界面

走了第一步,红方中炮,黑方上马

第一步

第二步,红方用炮吃掉黑方的卒后,黑方的马会吃掉炮

第二步

若干步后,黑方炮处于将军状态

将军状态

如果红方不做出回应,黑方会直接将军,游戏获胜

黑方获胜

测试过程中需要不断调整棋局估算的参数,经过多次测试,当前的这个参数是比较智能的一个状态了。

分析:从一些运行结果来看,程序方还是具有一定的智能的。因为时间效率问题,这里只实现了两层的博弈树,如果玩家水平比较不错的话,程序方一般是比较难获胜的。

??相比起极小极大搜索法,alpha-beta剪枝算法得到的结果是完全相同的,它并没有在搜索解上有更加好的结果,但是,MIN、MAX要将整个图都搜索完毕,而alpha-beata剪枝算法只需要搜索其中的部分节点,所以它具有更高的效率。因此,给定相同的时间,alpha-beta能够搜索更深的深度,因而能够获得更好的走步。

??这里再给出一些日后优化的思路。一个是可以加深博弈树的层数,两层显然还是比较简单,基本不能战胜玩家。而四层却会需要大量的时间。一个比较好的方法是,对于那些明显比较有优势的走步,我们不需要看其它的走步,直接就选择这一步。比方说,如果当前走步是能够吃掉对方的车,那么很大概率上这都是一个很好的走步,因此我就不需要管后面的事情了,也相当于是一个基于启发式函数的剪枝。当然,具体的实现还要经过大量的测试才行。希望假期能有时间,继续把这个项目完善。


  1. 象棋局面评估:https://blog.csdn.net/jb80400812/article/details/4174410
  2. 调整评价函数:http://www.xqbase.com/computer/evalue_intro2.htm
  3. UI参考:https://github.com/geeeeeeeeek/IntelligentChineseChessSystem
    以上就是本篇文章【alpha-beta剪枝算法实现中国象棋人机对战】的全部内容了,欢迎阅览 ! 文章地址:http://www.razcy.com/news/4435.html 
     资讯      企业新闻      行情      企业黄页      同类资讯      首页      网站地图      返回首页 月落星辰移动站 http://m.razcy.com/ , 查看更多   

点击拨打: